Refine Your Search

Topic

Author

Affiliation

Search Results

Technical Paper

Vapor Pressures of Diesel Fuel Oxygenate Blends

2002-10-21
2002-01-2850
A gas chromatographic technique was used to determine the vapor pressures of blends of six candidate diesel fuel oxygenates with three diesel fuels at 0, 5, 10, 30, and 100 percent blend levels. Both the oxygenates and the diesel fuels were selected to represent a variety of chemical compositions. The vapor pressures were determined over a range of temperatures from -30 C to +30 C. In each case the fraction of the vapor pressure derived from the oxygenate and the fuel was identified. The vapor pressure results showed that there were significant deviations from ideality, leading to both higher and lower vapor pressures than would be predicted from Raoult's Law. These results are significant for fire safety and evaporative emissions as well as for a more basic understanding of the behavior of these blends. Data were also obtained on the heats of vaporization for each of the blends.
Technical Paper

Oxygenate Compatibility with Diesel Fuels

2002-10-21
2002-01-2848
Miscibility, water tolerance, cloud point, and flash point data are presented for seven candidate diesel fuel oxygenates: dipentyl ether, dibutoxymethane, 2-ethoxyethyl ether, diethyl maleate, tripropylene glycol monomethyl ether, dibutyl maleate, and glycerol tributrate. These oxygenates were blended with three different diesel fuels: an oil sands diesel, an ultra-low sulfur diesel, and a Fischer-Tropsch diesel. Blend levels included 0, 5, 10, 30, and 100 % oxygenate. Properties were measured at temperatures of -30, -15, 0, 15, and 30 C.
Technical Paper

Interlaboratory Cross-Check of Heavy-Duty Vehicle Chassis Dynamometers

2002-10-21
2002-01-2879
Six laboratories capable of chassis-testing heavy-duty vehicles participated in a crosscheck program designed to compare emissions results from a Ford L-9000. The single-axle vehicle was shipped to each laboratory and tested through a series of UDDS and steady-state cycles. The resulting data were compared statistically using reproducibility and repeatability analyses. Although one lab produced some results that significantly differed from the other five, the remaining labs produced comparable results. TPM, CO and THC were the most variable while NOX and CO2 were most stable. Lab differences included atmospheric and environmental conditions, road-load curve application and drivers. Comparison of steady state and transient tests suggest that driver variability is not a major factor.
Technical Paper

Speciation of Organic Compounds from the Exhaust of Trucks and Buses: Effect of Fuel and After-Treatment on Vehicle Emission Profiles

2002-10-21
2002-01-2873
A study was performed in the spring of 2001 to chemically characterize exhaust emissions from trucks and buses fueled by various test fuels and operated with and without diesel particle filters. This study was part of a multi-year technology validation program designed to evaluate the emissions impact of ultra-low sulfur diesel fuels and passive diesel particle filters (DPF) in several different heavy-duty vehicle fleets operating in Southern California. The overall study of exhaust chemical composition included organic compounds, inorganic ions, individual elements, and particulate matter in various size-cuts. Detailed descriptions of the overall technology validation program and chemical speciation methodology have been provided in previous SAE publications (2002-01-0432 and 2002-01-0433).
Technical Paper

Development of the Direct Nonmethane Hydrocarbon Measurement Technique for Vehicle Testing

2003-03-03
2003-01-0390
The Automotive Industry/Government Emissions Research CRADA (AIGER) has been working to develop a new methodology for the direct determination of nonmethane hydrocarbons (DNMHC) in vehicle testing. This new measurement technique avoids the need for subtraction of a separately determined methane value from the total hydrocarbon measurement as is presently required by the Code of Federal Regulations. This paper will cover the historical aspects of the development program, which was initiated in 1993 and concluded in 2002. A fast, gas chromatographic (GC) column technology was selected and developed for the measurement of the nonmethane hydrocarbons directly, without any interference or correction being caused by the co-presence of sample methane. This new methodology chromatographically separates the methane from the nonmethane hydrocarbons, and then measures both the methane and the backflushed, total nonmethane hydrocarbons using standard flame ionization detection (FID).
Technical Paper

Formaldehyde Emission Control Technology for Methanol-Fueled Vehicles: Catalyst Selection

1992-02-01
920092
The use of methanol as a “clean fuel” appears to be a viable approach to reduce air pollution. However, concern has been expressed about potentially high formaldehyde emissions from stoichiometrically operated light-duty vehicles. This paper presents results from an emission test program conducted for the California Air Resources Board (CARB) and the South Coast Air Quality Management District (SCAQMD) to identify and evaluate advanced catalyst technology to reduce formaldehyde emissions without compromising regulated emission control. An earlier paper presented the results of evaluating eighteen different catalyst systems on a hybrid methanol-fueled test vehicle. (1)* This paper discusses the optimization of three of these catalyst systems on four current technology methanol-fueled vehicles. Emission measurements were conducted for formaldehyde, nonmethane organic gases (NMOG), methanol, carbon monoxide, and oxides of nitrogen emissions.
Technical Paper

Laboratory Testing of a Continuous Emissions Monitor for Trace Level Sulfur Dioxide

2016-04-05
2016-01-0986
The measurement of SO2 levels in vehicle exhaust can provide important information in understanding the relative contribution of sulfur and sulfate from fuel vs. oil source to PM. For this study, a differential optical absorption spectrometer (DOAS) that can measure SO2 down to 20 ppbV in real-time was built and evaluated. The DOAS consisted of an extractive sampling train, a cylindrical sampling cell with a single-path design to minimize cell volume, a spectrometer, and a deuterium lamp light source with a UVC range of ∼200-230 nanometer (nm). Laboratory tests showed detection limits were approximately in the range of 12 to 15 ppbV and showed good linearity over SO2 concentration ranges of 20 to 953 ppbV. Interference tests showed some interference by NO and by NH3, at levels of 300 ppmV and 16.6 ppmV, respectively.
Technical Paper

Regulated Emissions from Heavy Heavy-Duty Diesel Trucks Operating in the South Coast Air Basin

2006-10-16
2006-01-3395
Heavy duty diesel vehicle (HDDV) emissions are known to affect air quality, but few studies have quantified the real-world contribution to the inventory. The objective of this study was to provide data that may enable ambient emissions investigators to m,odel the air quality more accurately. The 25 vehicles reported in this paper are from the first phase of a program to determine representative regulated emissions from Heavy Heavy-Duty Diesel Trucks (HHDDT) operating in Southern California. Emissions data were gathered using a chassis dynamometer, full flow dilution tunnel, and research grade analyzers. The subject program employed two truck test weights and four new test modes (one was idle operation), in addition to the Urban Dynamometer Driving Schedule (UDDS), and the AC50/80 cycle. The reason for such a broad test cycle scope was to determine thoroughly how HHDDT emissions are influenced by operating cycle to improve accuracy of models.
Technical Paper

Greenhouse Gas Emissions of MY 2010 Advanced Heavy Duty Diesel Engine Measured Over a Cross-Continental Trip of USA

2013-09-08
2013-24-0170
The study was aimed at assessing in-use emissions of a USEPA 2010 emissions-compliant heavy-duty diesel vehicle powered by a model year (MY) 2011 engine using West Virginia University's Transportable Emissions Measurement System (TEMS). The TEMS houses full-scale CVS dilution tunnel and laboratory-grade emissions measurement systems, which are compliant with the Code of Federal Regulation (CFR), Title 40, Part 1065 [1] emissions measurement specifications. One of the specific objectives of the study, and the key topic of this paper, is the quantification of greenhouse gas (GHG) emissions (CO2, N2O and CH4) along with ammonia (NH3) and regulated emissions during real-world operation of a long-haul heavy-duty vehicle, equipped with a diesel particulate filter (DPF) and urea based selective catalytic reduction (SCR) aftertreatment system for PM and NOx reduction, respectively.
Technical Paper

Evaluation of an Enhanced Constant Volume Sampling System and a Bag Mini Diluter for Near Zero Exhaust Emission Testing

2005-04-11
2005-01-0684
As automotive exhaust emission standards have become more stringent and emission control technologies have advanced over the years, accurately measuring the resulting near zero emissions has become increasingly difficult. To improve measurement accuracy, enhancements have been made to the conventional Constant Volume Sampling system (CVS) and to the analytical instrumentation This study included the evaluation of a CVS enhancement. Specifically, a prototype air filter was utilized to enhance the performance of a CVS by reducing non-methane hydrocarbons (NMHC) from dilution air at ambient temperature. Also incorporated into this study was the assessment of a Bag Mini-Dilute (BMD), a relatively new sampling system developed for measuring low-level vehicle emissions. The BMD can be used as an alternative to the CVS and has been approved for emission measurement by the United States Environmental Protection Agency (US EPA) and the California Air Resources Board (ARB.)
Technical Paper

Emissions of Transport Refrigeration Units with CARB Diesel, Gas-to-Liquid Diesel and Emissions Control Devices

2009-11-02
2009-01-2722
A novel in situ method was performed for measuring emissions and fuel consumption of transport refrigeration units (TRUs). The test matrix included two fuels, two exhaust configurations, and two TRU engine operating speeds. The test fuels were California ultra low sulfur diesel and gas-to-liquid (GTL) diesel. The exhaust configurations were a stock original equipment manufacturer (OEM) muffler and a Thermo King pDPF™ diesel particulate filter. The two TRU engine operating speeds were high and low, as controlled by the TRU user interface. Test results indicate that GTL diesel fuel reduces all regulated emissions at high and low engine operating speeds. Separately, the application of a Thermo King pDPF reduced regulated emissions, in some cases almost entirely. Finally, the application of both GTL diesel and a Thermo King pDPF reduced regulated emissions at high engine operating speed, but with an increase in oxides of nitrogen (NOx) at low engine speed.
Technical Paper

Fuel Effects Study with In-Use Two-Stroke Motorcycles and All-Terrain-Vehicles

2013-10-14
2013-01-2518
This paper covers work performed for the California Air Resources Board and US Environmental Protection Agency by Southwest Research Institute. Emission measurements were made on four in-use off-road two-stroke motorcycles and all-terrain vehicles utilizing oxygenated and non-oxygenated fuels. Emission data was produced to augment ARB and EPA's off-road emission inventory. It was intended that this program provide ARB and EPA with emission test results they require for atmospheric modeling. The paper describes the equipment and engines tested, test procedures, emissions sampling methodologies, and emissions analytical techniques. Fuels used in the study are described, along with the emissions characterization results. The fuel effects on exhaust emissions and operation due to ethanol content and fuel components is compared.
Technical Paper

Fuel Effects Study with Small (<19kW) Spark-Ignited Off-Road Equipment Engines

2013-10-14
2013-01-2517
This paper covers work performed for the California Air Resources Board and the United States Environmental Protection Agency by Southwest Research Institute. Emission measurements were made on nine types of off-road equipment with small (<19kW) spark-ignited engines including handheld and non-handheld equipment utilizing oxygenated and non-oxygenated fuels. Emission data was produced to augment ARB and EPA's off-road emission inventory. It was intended that this program provide ARB and EPA with emission test results they require for atmospheric modeling. The paper describes the equipment and engines tested, test procedures, emissions sampling methodologies, and emissions analytical techniques. Fuels used in the study are described, along with the emissions characterization results. The fuel effects on exhaust emissions and operation due to ethanol content and fuel components is compared.
Technical Paper

Marine Outboard and Personal Watercraft Engine Gaseous Emissions, and Particulate Emission Test Procedure Development

2004-09-27
2004-32-0093
The U.S. EPA and the California Air Resources Board have adopted standards to reduce emissions from recreational marine vessels. Existing regulations focus on reducing hydrocarbons. There are no regulations on particulate emissions; particulate is expected to be reduced as a side benefit of hydrocarbon control. The goal of this study was to develop a sampling methodology to measure particulate emissions from marine outboard and personal watercraft engines. Eight marine engines of various engine technologies and power output were tested. Emissions measured in this program included hydrocarbons, carbon monoxide, oxides of nitrogen. Particulate emissions will be presented in a follow-up paper.
Technical Paper

Comparison of Exhaust Emissions from a Vehicle Fueled with Methanol-Containing Additives for Flame Luminosity

1993-03-01
930220
Two additive blends proposed for improving the flame luminosity in neat methanol fuel were investigated to determine the effect of these additives on the exhaust emissions in a dual-fueled Volkswagen Jetta. The two blends contained 4 percent toluene plus 2 percent indan in methanol and 5 percent cyclopentene plus 5 percent indan in methanol. Each blend was tested for regulated and unregulated emissions as well as a speciation of the exhaust hydrocarbons resulting from use of each fuel. The vehicle exhaust emissions from these two fuel blends were compared to the Coordinating Research Council Auto-Oil national average gasoline (RF-A), M100, and M85 blended from RF-A. Carter Maximum Incremental Reactivity Factors were applied to the speciated hydrocarbon emission results to determine the potential ozone formation for each fuel. Toxic emissions as defined in the 1990 Clean Air Act were also compared for each fuel.
Technical Paper

Evaluation of a Catalytic Converter for a 3.73 kW Natural Gas Engine

1993-03-01
930221
An oxidizing catalytic converter was evaluated in the exhaust train of a 3.73 kW (5 hp) natural gas engine. The engine was developed for use in a gas engine-driven heat pump and is designed for operation at lean air/fuel ratios. The converter tested had a metallic substrate with a cell density of 31 cells/cm2. Converter tests measured emission performance as a function of the key engine variables: speed, load, spark advance and air/fuel ratio. As expected, CO conversion averaged well above 90 percent. Hydrocarbon conversion varied between 68.6 and 89.8 percent over a range of eight speed and load combinations selected to cover the normal operating range of the engine. Conversion of individual hydrocarbon species was examined also. Although the converter tests were not designed to isolate the key converter variables, a simple mathematical model allowed us to explore the effect of these variables on conversion.
Technical Paper

Vehicle Emissions Results-CleanFleet Alternative Fuels Project

1995-02-01
950394
Vehicle exhaust emissions measurements are reported for full-size panel vans operating on four alternative motor fuels and control gasoline. The emissions tests produced data on in-use vans. The vans were taken directly from commercial delivery service for testing as they accumulated mileage over a 24-month period. The alternative fuels tested were compressed natural gas, propane gas, California Phase 2 reformulated gasoline (RFG), and methanol (M-85 with 15 percent RFG). The control gasoline for the emissions tests was an industry average unleaded blend (RF-A). The vehicle technologies tested represent those options available in 1992 that were commercially available from Ford, Chrysler, and Chevrolet or which these manufacturers agreed to provide as test vans for daily use in commercial service by FedEx.
Technical Paper

A Study of the Relative Benefits of On-Board Diagnostics and Inspection and Maintenance in California

1995-08-01
951944
California is considering adopting an enhanced Inspection and Maintenance (I&M) program (commonly referred to as Smog Check II) beginning with the 1996 calendar year. This program will utilize a targeting scheme to identify vehicles likely to be high emitters and send these vehicles to centralized testing facilities. The remaining fleet of vehicles will be sent to decentralized testing facilities. At these facilities, vehicles will be subjected to steady state loaded mode dynamometer based tests. Simultaneously, all 1996 and later model year passenger cars, light- and medium-duty trucks sold in California will be equipped with an On-Board Diagnostic (OBDII) system. This system is designed to monitor critical emission related components and activate a Malfunction Indicator Light (MIL) when a failure or a drift in calibration is likely to cause emissions to exceed 1.5 times the vehicle certification standards.
Technical Paper

Commercial Vehicle Brake Testing - Part 2: Preliminary Results of Performance-Based Test Program

1995-11-01
952672
A study to determine whether performance-based brake testing technologies can improve the safety of our highways and roadways through more effective or efficient inspections of brakes of on-the-road commercial vehicles is being sponsored by FHWA/DOT-OMC. A key objective of the study is to determine how the results from performance-based “inspections” compare with results obtained through traditional visual methods, such as those recommended by the Commercial Vehicle Safety Alliance (CVSA). Data from joint inspections (i.e., CVSA and performance-based inspections on the same vehicle), obtained over approximately a one year period, have been analyzed. Description of three of the performance-based technologies and preliminary results from approximately 1,400 joint inspections are covered in this paper.
Technical Paper

Commercial Vehicle Brake Testing - Part 1: Visual Inspection Versus Performance-Based Test

1995-11-01
952671
There is recent interest in examining whether performance-based brake tests are advantageous compared to presently used visual inspections for safety checks of on-the-road commercial vehicles. In this first of a series of two papers, the basic features of visual inspections and performance-based brake tests are presented and discussed. It is shown that the visual inspection method is inherently “predictive” in nature and therefore conservative. A performance-based brake test is objective but not predictive. The performance based test may reveal safety-related defects only for the specific vehicle load configuration and operating condition. The presentation is concluded with a discussion of what may be required for future enforceable use of performance-based brake testing devices for “on the road” inspections of commercial vehicles. In the short term, use of performance based testing will depend on correlation of test results with presently enforceable visual methods or standards.
X